985 research outputs found

    An interpretable wildfire spreading model for real-time predictions

    Full text link
    Forest fires pose a natural threat with devastating social, environmental, and economic implications. The rapid and highly uncertain rate of spread of wildfires necessitates a trustworthy digital tool capable of providing real-time estimates of fire evolution and human interventions, while receiving continuous input from remote sensing. The current work aims at developing an interpretable, physics-based model that will serve as the core of such a tool. This model is constructed using easily understandable equations, incorporating a limited set of parameters that capture essential quantities and heat transport mechanisms. The simplicity of the model allows for effective utilization of data from sensory input, enabling optimal estimation of these parameters. In particular, simplified versions of combustion kinetics and mass/energy balances lead to a computationally inexpensive system of differential equations that provide the spatio-temporal evolution of temperature and flammables over a two-dimensional region. The model is validated by comparing its predictions and the effect of parameters such as flammable bulk density, moisture content, and wind speed, with benchmark results. Additionally, the model successfully captures the evolution of the firefront shape and its rate of spread in multiple directions

    FL learning could contribute to the enhancement of cognitive functions in MCI older adults

    Get PDF
    The purpose of the current research endeavour was to evaluate if the learning of English as a Foreign Language (EFL) could constitute an effective non-pharmacological intervention for older adults diagnosed with Mild Cognitive Impairment (MCI). Specifically, the focus was on the assessment of the impact of EFL learning on a variety of cognitive and psychological functions. To this aim, a total sample of 241 Greek older adults was recruited from the day care units for patients with dementia of the Greek Association of Alzheimer’s Disease and Related Disorders, in Thessaloniki, Greece. An experimental research design was adopted and two groups were formulated. The intervention group comprised 98 individuals who attended an18-month EFL course and either had no prior knowledge of English or had attended some lessons decades before. The control group included 143 individuals who did not attend any cognitive stimulation programme within the premises of the day care units. A battery of neuropsychological tests, assessing general cognitive functioning, attention, verbal learning, memory, visuo-perceptual ability, executive function, and depression, was administered by the psychologists of the day care units to all of the participants. Neuropsychological data for the intervention group were collected at three time-points (i.e. pre-, mid-, and post-intervention), while neuropsychological data for the control group were collected at two time-points (i.e. pre- and post-research). Hypothesis testing revealed statistically significant differences both within the intervention group and between the intervention and control group across the evaluation time-points

    An Introduction to Temporal Graphs: An Algorithmic Perspective

    Get PDF
    A \emph{temporal graph} is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence G1,G2
,GlG_1,G_2\ldots,G_l of static graphs over the same (static) set of nodes VV. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension in added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community

    The temporal explorer who returns to the base.

    Get PDF
    In this paper we study the problem of exploring a temporal graph (i.e. a graph that changes over time), in the fundamental case where the underlying static graph is a star on n vertices. The aim of the exploration problem in a temporal star is to find a temporal walk which starts at the center of the star, visits all leaves, and eventually returns back to the center. We present here a systematic study of the computational complexity of this problem, depending on the number k of time-labels that every edge is allowed to have; that is, on the number k of time points where each edge can be present in the graph. To do so, we distinguish between the decision version STAREXP(k) , asking whether a complete exploration of the instance exists, and the maximization version MAXSTAREXP(k) of the problem, asking for an exploration schedule of the greatest possible number of edges in the star. We fully characterize MAXSTAREXP(k) and show a dichotomy in terms of its complexity: on one hand, we show that for both k=2 and k=3 , it can be efficiently solved in O(nlogn) time; on the other hand, we show that it is APX-complete, for every k≄4 (does not admit a PTAS, unless P = NP, but admits a polynomial-time 1.582-approximation algorithm). We also partially characterize STAREXP(k) in terms of complexity: we show that it can be efficiently solved in O(nlogn) time for k∈{2,3} (as a corollary of the solution to MAXSTAREXP(k) , for k∈{2,3} ), but is NP-complete, for every k≄6

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur
    • 

    corecore